
Radical Play

Sample Curriculum
Self-Expression

SolidarityAutonomy

radicalplay.org



Overview

This is an example curriculum for an introductory course on 
video game design and development for youth ages 12 and up, 
with little-to-no prior game making experience. 

Its explicit objective is to expose students to a variety of design 
methodologies, diverse array of game development software, 
and novel game play experiences to encourage student self-ex-
pression through video game design.

This course will also aim to develop students sense of autonomy, 
by using a variety of classroom management techniques, and 
allowing students to choose their game-making tools and cre-
ative path.

The schedule is structured to allow for a period of mutual ac-
quaintance between students and instructors; this curriculum 
must be adapted on a case-by-case basis taking into consider-
ation the instructors’ and students’ skill set and background, as 
well as the class’ shared values.

The instructor’s main task is to create a context in which students 
will motivate themselves and pursue their interests with the help 
of peers and a caring adult. 



Course Goals

•	 Expose students to a wide range of game-creating tools and 
design processes, including analog games and prototyping.

•	 Expose students to a diverse range of play experiences.

•	 Empower students who are traditionally discouraged from 
participating the field (non-male, non-binary, students of 
color, 1st generation) to make games.

•	 Each student makes at least one playable video game of 
their own by the end of the course.

•	 Expose non-programmers to some programming, non-artists 
to some art-making, non-writers to some writing, etc.

•	 Prepare students for self-guided learning outside of the 
classroom.

•	 Contribute to students sense of autonomy, enable self-ex-
pression through a making practice, in an environment that 
fosters solidarity.

What are not goals of this course

•	 Teach programming.

•	 Teach students to become experts in only one specific en-
gine or software.

•	 Prepare students for a career in game development.

•	 Guide students in the making of a complex game with intri-
cate graphics, sound, and animation.

Daily Class Structure

•	 1 hour of show & tell, tutorials, lectures, etc.

•	 2 hours of uninterrupted work time, minimum.

•	 Work time increases as class moves forward, as students get 
comfortable with skills and software, and need time to work 
on their games.

Class Organization and Composition

•	 One or more main instructors that act as guides for the 
learning process. They have experience on the field and 
share their subjective accumulated library of games and 
game-making skills, helping expose students to new ex-
periences. This needs to happen by setting the context for 
learning, not by authority.

•	 One or more assistants. Assistants work together with in-
structors in guiding and sharing, but have less responsibility 
in structuring curriculum and activities.

•	 Student body must be composed by at least 1/2 of un-
der-represented demographics (i.e. women, people of color, 
queer students, ESL students, or a combination). If the class 
is composed almost entirely of PoC students (for example), 
then at least 1/2 must be non-male.

•	 Instructors, assistants, and students work together on games 
and class activities. Assessment happens regularly to deter-
mine if students are having their needs met. 

•	 Syllabus is constantly altered during the course based on 
input from students or a perceived stronger interest on a 
particular subject or tool.



•	 Students who are interested in learning a completely new 
skill that facilitates game making (e.g. programming, 3D, 
writing) will work closely with instructors and assistants in 
specialized workshops. 

•	 There is no hierarchy of skills in this class, e.g. programmers 
are not better game designers than writers.

Tools and Guidelines

•	 Don’t use competition or rely on grade assessment.

•	 Introductions: Have students pair up, introduce themselves 
to each other, and then introduce their partners to the rest 
of the class.

•	 Rotate groups often. A random group generator is helpful.

•	 Practice Pair Programming: Students pair up and take turns 
driving (telling the partner what to type) or navigating (writ-
ing the code). Switch after a few lines.

•	 Use the Ask 3 Rule: Ask for the help of 3 people (the inter-
net counts as 1) before relying on the instructor.

•	 Encourage Step up/Step back: Those who speak a lot step 
back, those who are quiet can step up.

•	 Limit lecture time, increase “play” time with tools.

•	 Review values list with students every 1–2 weeks.

Schedule

•	 Week 1: Introductions and sharing

•	 Week 2: Intro to tools and design frameworks

•	 Week 3: Assets (graphics, sound, etc.)

•	 Week 4: Game proposals, workshops

•	 Week 5: Development time

•	 Week 6: Polish, play testing, presentation skills 

Course Outline

1. Class Values

•	 Compile list of values to be used as guidelines for syllabus 
changes and classroom conduct. Use a process of consensus 
and keep the list to a manageable number.

2. Game Design Basics

•	 Class discussion: what is a game?

•	 Brief history of games

•	 What can you say with a game?

•	 Playing as a game designer

•	 Game design methodologies

•	 Modifying (or “modding”) existing games

•	 Writing game rules

•	 Paper prototyping and play testing



3. Video games today

•	 Survey of the state of the medium: from short authorial 
games, to mobile games, to AAA blockbusters

•	 Meta-game: modding, Let’s Play, eSports, speed-running

•	 Issues: identity, politics, education

•	 Research: artificial intelligence, procedural content genera-
tion, games and education

•	 Game jams

•	 Publishing

4. Game development skills

Workshops and tutorials organized in smaller groups, depend-
ing on student need, skill levels, and interest.

•	 Intro to programming

•	 Intro to 2D and 3D art making and art asset resources

•	 Sound editing and resources

•	 Basics of animation

•	 Writing for games

•	 Collaboration and skill-sharing

5. Game development software

•	 Alongside each software, students will learn how to look for 
resources for self-guided learning outside of the classroom.

•	 Engines: Twine, Unity, Other engines (GameSalad, Game-
Maker, Javascript/HTML5 engines, Unreal)

•	 2D art software: Photoshop/GIMP, Illustrator/Inkscape

•	 3D art software: Maya/Blender, ZBrush/Sculptris

•	 Audio editing software: Audacity

6. Making the first game

Students will develop a game idea, individually or in groups, 
and will pursue it to completion in their preferred game engine 
with guidance from instructors.

Topics covered:

•	 Idea development

•	 Proper scoping

•	 Paper prototyping

•	 Prototype in selected engine

•	 Asset creation

•	 Play testing

•	 Troubleshooting

•	 Publishing

Example Final Assignment: Game as Gift

Design and develop a video game as a gift for a person you 
care about. Think of the game as if it was a letter or birthday 
card; you will be designing it specifically for that person. What 
do you want them to think of or feel when they play it? How is it 
relevant and personal to your relationship with them?


